
The Shell

INTRODUCTION

The Linux/Unix shell refers to a special program that allows
you to interact with it by entering certain commands from
the keyboard; the shell will execute the commands and
display its output on the monitor. The environment of
interaction is text-based (unlike the GUI-based interaction
we have been using in the previous chapters) and since it
is command-oriented this type of interface is termed
Command Line interface or CLI. Before the advent of GUI-
based computing environments, the CLI was the only way
that one can interact and access a computer system.

Up until now, there was never a need to type commands
into a shell; and with the modernisation and creation of a
lot of newer GUI-based tools, the shell is becoming
increasingly un-required to perform many tasks. But that
said, the shell is a very powerful place, and a lot is
achieved through it. A lot of the front-end GUI methods of
doing things have similar ways and means to get done with
using the shell. Professional Linux and UNIX users find the
shell very powerful, and an introduction to at least the
basic shell usage is useful.

GETTING TO A SHELL

Since it is most likely that you are in the graphical desktop
environment now, the underlying shell that is available is
not displayed. To access a shell, try the following key
combination,

Control + Alt + F1

Where F1 can be replaced by F2, F3, and so on. The
graphical desktop tends to run in F7 or F8, so to go back to
your graphical desktop screen, just hit Control + Alt + F7.
These are virtual terminals.

Alternatively, you could get to a Terminal application, so
you can have a shell while your in the graphical desktop
environment (this is much preferred, and will be used
throughout this Chapter). To do this, go to:

Main Menu --> System Tools --> Terminal

Or right-click on the desktop, and click on the Open
Terminal option. This terminal is equivalent to the virtual
terminals mentioned earlier, except now you don't have to
switch screens – you can just minimize or maximize the
terminal (or if you're done, you can close it).

SOME USEFUL COMMANDS

Now that you are at a terminal, you might as well input
some commands. For example, when you start a shell,
display such as below (or similar) will be seen (and this can
be configured to your liking!):

[-(byte@hermione)-(pts/4)-(05:34pm:05/06/2004)-]
[-(~)>

The cursor blinks, waiting for input. To this, some of the
more used and useful commands include:

• ls – list files in the current directory.

• cd – change working directory. If your current path is /
home/username/Trash for instance, typing “cd” will
bring you back to /home/username.

• mkdir – make a new directory

• rmdir – delete a directory (must be empty)

• cp – invoked such as “cp currentFile newFile”, and is
used to copy files.

• mv – invoked such as “mv currentLocation
newLocation”. This is used to either move or rename
files.

• rm – invoked such as “rm myFile”; it is used to delete
files permanently.

• pwd – prints the working (current) directory.

• cat – concatenate files (can be used to join them
together), and prints its output to standard output (the
terminal screen). Used like: “cat myFile”.

• less – allows for file viewing in the shell, and is most
useful for text files; invoked like “less myFile”.

• find – can be used to find files via the command line.
Example usage could be: “find . -name toc”, which
looks at the current directory (defined by “.”) for any
files with the name “toc”.

• locate – picks entries from a database, that is updated
regularly; invoked via “locate myFile”. Its much quicker
than find (since it only searches a database), but might
not be as quick to update as find (the update of the
database might happen once every day only).

• date – display the current date! This can also be used to
set the date of the system (but administrator privileges
are required).

• history – built-in shell command for the BASH
environment that shows the last run commands.

As always, these commands just begin to scratch the
surface of the capability of the shell. There are thousands
of such commands available on your system! And keep in
mind that each and every command comes with options,
that are usually executed via the -flag – again, the man
pages list all useful commands. For instance the command

rm -i

will prompt when deleting a file, so you have to either say
'y' if you're sure, or 'n' if you do not want to delete the file.

[-(/tmp)> rm -i usr.bin
rm: remove regular file `usr.bin'? y

A FEW MORE CONCEPTS AND SHORTCUTS

Now that you've seen some commands that are useful in
the shell, its important to know a few more concepts. For
instance, the tilde (“~”) represents the home directory, so
rather than typing /home/username it can be represented
via a '~'. This means less typing for you.

[-(~/MyOSS-Stuff/IOSN)> pwd
/home/byte/MyOSS-Stuff/IOSN
[-(~/MyOSS-Stuff/IOSN)> cd ~
[-(~)> pwd
/home/byte

So in that example, I was located in /home/byte/MyOSS-
Stuff/IOSN, and just by issuing a “cd ~”, the shell has
brought the current working directory to /home/byte.

A dot “.” means the current directory. While “../” will mean
the parent directory. This can be nested to include “../../”
and so on, till it reaches the top level directory /.

INPUT/OUTPUT REDIRECTION AND PIPES

Running a command by itself with a lot of output doesn't
seem all that useful. For instance, if there are many files in
a directory, running a command to list the directory like,

ls /usr/bin

will result in about 2100 lines being displayed on the
screen! To actually get any useful information out of it, you
might want to dump the output of the ls command to a file;
or maybe use a utility like less to view it. All this is possible
thanks to input/output redirection and pipes.

Input redirection is performed using < or <<, while output
redirection is done via > or >>. A point to note is that
when using >, it just recreates the file, even if the same
filename exists, while >> concatenates the output to the
same file, causing it to possibly be double in size (if its the
same output).

A pipe (“|”) is used to pass the output of the command not
to a file, or to the screen, but to the next utility. Pipes can
be nested, so you can pass the data through several
utilities before you can get the useful information that you
want. Let's dive into some examples!

1. [-(/tmp)> ls /usr/bin >> usr.bin
2. [-(/tmp)> wc -l usr.bin
3. 2171 usr.bin
4. [-(/tmp)> ls /usr/bin >> usr.bin
5. [-(/tmp)> wc -l usr.bin
6. 4342 usr.bin
7. [-(/tmp)> ls /usr/bin > usr.bin
8. [-(/tmp)> wc -l usr.bin
9. 2171 usr.bin
Note: the line numbers are added for clarity, and are
not included in the shell output!

In line 1, the output of the directory listing of /usr/bin gets
placed in a file called usr.bin. On line 2, a new utility called
'wc' is used (this is used to print the number of lines in the
file (as it gets passed the -l option) – its output is at line 3.
The same command is then repeated on line 4, and now,
the file is double the size as per line 6! That is because the
>> output redirection was used, which has concatenated
the two outputs together. Notice that in line 7, a single > is
used, and in line 9, it shows that the file has been over-
written with the new contents.

[-(/tmp)> ls /usr/bin | grep cancel
cancel
cancel.cups

The above is an example of how a pipe is used. After listing
the files, the output is passed on to a utility called grep
(which basically searches for a pattern, and prints the
output) and the string being searched for is “cancel”. It
comes back with two matches. Similarly, a command like:

ls /usr/bin | less

Will place the output of the directory listing into the less
pager so that it can be scrolled through easily. And for
another example as to how pipes can be nested, issuing:

[-(/tmp)> 'ls' /usr/bin | grep auto|wc -l
19

sends the output of the directory listing of /usr/bin to grep,
which then searches for the string “auto”, and then wc
prints how many times it occurs in lines.

A useful command string that a lot of systems
administrators tend to use would be:

[root@hermione root]# tail -f /var/log/messages
Jul 5 12:04:02 hermione last message repeated 13
times
Jul 5 16:17:17 hermione last message repeated 17
times
Jul 5 16:17:28 hermione last message repeated 18
times
Jul 5 16:17:32 hermione

A 'tail' displays the last ten lines of the file, and the -f
option means that if there are more logs, it gets displayed
(via it being appended to the bottom).

WHERE DO I GET HELP?

Rather than get frightened off the shell, there are some
sources of help, in the event that you aren't sure what
you're doing in the shell.

Man Pages

These are manual pages, for each and every command
that resides on your system. This is a first point of
reference, and it is invoked by:

man command-name

e.g.

$ man man

The above runs man on itself, explaining a bit about the
manual page system.

Info Pages

This is the new GNU project method of distributing
manuals, and info pages are a lot more comprehensive
than man pages. It is invoked by:

info command-name

e.g.

$ info info

The above runs info on itself, and provides some useful
information as to how info can be used, and how you can
navigate info documents.

Other Useful Commands (for help)

While still on the topic of help, there are a few more useful
commands that you want to know about:

• whatis – invoked by “whatis package-name” and it
provides information about the tool that whatis
recognizes (and has in its database).

• apropos – invoked by “apropos string”, and it provides
strings matching what is located in the whatis database.
This is most useful when you don't know what
command you want to run, but have an idea that as to
what it should be dealing with (so apropos mail should
provide all sorts of mail clients that are available on
your system).

CONCLUSION

This is the power of Linux and UNIX command lines. There
is much more to learn, as there are different shells, and
different shell syntaxes available. Also, regular expressions
are useful, and there are plenty more utilities available,
and if a liking towards the shell is taken, shell scripts can
be written to perform a lot of tasks, including backing up
directories and more!

EXERCISES

1. Open up a shell on your Desktop and perform the
following:

• find the name of the directory you are in
• list out the contents of the current directory
• list out the contents of the directory /usr/bin
• check the current date and time

2. Change directory to your home directory and make a
new sub-directory there named Temp11 and change
directory to it
• copy the following files from the /etc directory to the

directory Temp11: services, motd, fstab, hosts

• concatenate the files copied above into one single
file called file1

• count the number of lines present in the file file1
• delete the four files listed above in the directory

Temp11

